电阻焊虽然具有劳动条件好,不需另加焊接材料,操作简便,易实现机械化等优点;但也受到耗电量大、电极棒更换、被焊材料导电性能、适用的接头形式、以及可焊工件厚度(或断面尺寸)等因素的限制。下面这段视频,里面的成组焊接就是电阻焊,感受一下。
电阻焊接原理
电阻焊(resistance welding)是把工件置于一定的电极力夹紧间,然后利用接电流通过件所析出的电阻热使被材料熔化,待冷却后形成可靠点的接方法。
电阻焊基本形式如下图所示,将即将接的材料 3 夹紧于两电极 2 之间,在施加一定的接压力后,接变压器 1 在接区释放较大的电流,并持续一定的时间,直到件的接触面间出现了真实的接触点后,再继续加大接电流让熔核持续地生长,此时接材料接触位置的原子不断被激活后形成熔化核心 4。最后接变压器停止通电,被融化件材料遇冷凝固为点。利用电流流经工件接触面及邻近区域产生的电阻热效应将其加热到熔化或塑性状态,使之形成金属结合的一种方法。电阻焊方法主要有四种,即点、缝、凸、对。
电阻焊点的热源是电流通过接区产生的电阻热。电阻焊点时,电流通过件产生的热量可由下式确定:
Q=I^2Rt
Q——产生的热量(J);
I——接电流(A);
R——两电极之间的电阻(Ω);
T——通电时间(s)。
上述公式表明决定电阻焊接的热量是焊接电流、两电极之间的电阻及通电时间三大因素。但其中热量的大部分是用来形成点焊的焊点,而少部分却分散流失于焊点周围的金属中。形成一定焊点所需的电流与通电时间有关,若通电时间很短,则点焊时所需的电流将增大。
两电极之间的电阻R随电阻焊方法的不同而不同,电阻点焊的电阻R是由两焊件的内部电阻Rw、两焊件之间的接触电阻Rc和电极与焊件之间的接触电阻Rcw组成。
电阻焊基本分类
电阻焊分为点焊、缝焊、凸焊和对焊。其中点焊是应用较广的方式。
点焊,是利用柱状电极加压通电,在搭接工件接触面成一个点的接方法。后面会有详细内容。
缝焊,焊件装配成搭接并置于两滚轮电极之间,滚轮加压焊件并转动,连续或断续送电,形成一条连续焊缝的电阻焊方法,称为缝焊。缝焊主要用于焊接焊缝较为规则、要求密封的结构。
1-上焊件;2-下焊件;3-上电极;4-下电极;5-焊机电源
凸焊,在一个工件上有预制的凸点,凸焊时一次可在接头处形成一个或多个熔核。凸焊是点焊的一种变型形式。
对焊,是使焊件沿整个接触面焊合的电阻焊方法。除了电阻对焊,相关的还有闪光对焊。
电阻对焊:将焊件装配成对接接头,使其端面紧密接触,利用电阻热加热至塑性状态,然后断电并迅速施加顶锻力完成焊接的方法。电阻对焊主要用于截面简单和强度要求不太高的焊件。
闪光对焊:将焊件装配成对接接头,接通电源,使其端面逐渐移近达到局部接触,利用电阻热加热这些接触点,在大电流作用下,产生闪光,使端面金属熔化,直至端部在一定深度范围内达到预定温度时,断电并迅速施加顶锻力完成焊接的方法。
电阻点焊过程四个阶段
点焊时,先加压使两个工件紧密接触,然后接通电流。电流流过所产生的电阻热使局部金属被熔化形成液态熔核。断电后,继续保持压力或加大压力,使熔核在压力下凝固结晶,形成组织致密的点。焊完一个点后,电极(或工件)将移至另一点进行焊接。当焊接下一个点时,有一部分电流会流经已焊好的点,称为分流现象。分流将使焊接处电流减小,影响焊接质量,因此两个相邻点之间应有一定距离。影响焊点质量的主要因素有接电流、通电时间、电极压力和工件表面清理情况等。点焊主要适用于薄板件,每次一个点或一次多个点。
通常,电阻点焊过程是由预压、接、维持和休止四个阶段所组成的,接时间、接电流以及电极电压是其基本参数。如下图所示为点过程中四个基本阶段的时序图。
预压阶段:此阶段主要完成了电极力的施加,在电极与件接触后,保持恒定的电极压力加持,以确保电流通道在通电过程中保持稳定,因此预压阶段需要有一定持续时间。
焊接阶段:此阶段作为熔核成型主要阶段,要求有效的接电流保持基本不变,或在小范围内浮动变化。在此阶段,焊区的温度分布经过非常复杂的变化之后逐渐稳定下来。起初时,件间输入热量远大于消散热量,因此焊接区温度快速攀升,同时形成高温连接区,由于此时外部空气与焊接中心的熔化件处于阻隔状态,因此焊件材料的不会与空气发生氧化反应。一定时间后,熔化区区域变大,其塑性环也跟随变大,直到输入热量与散失热量达到平衡稳定状态。
维持阶段,此阶段中电极还是保持和前两个阶段相同的状态,只是此时不再有接电流通过。此阶段主要是完成熔核中热量的消散,以冷却形成可靠点。
休止阶段:此阶段电流大小和电极压力均为零。在电极回升的同时,移开被焊物体,开始准备下一个焊接过程。
点焊电极常见布置方式
点焊按电极与被焊接材料的接触方式不同可分为:上下对碰法、平行间接法、平行法三类。下图所示为不同接触方式的点焊示意图。
图a所示为上下对碰法,所有的通用点焊机均采用这个方法。它从焊件上、下两侧馈电,适用于小型零件和大型零件周边各焊点的爆接。
图b所示为平行法,从一侧馈电时尽可能同时焊两点以提高生产效率。单面馈电会存在分流现象,当点焊间距过小时将无法焊接。有些情况,可在工件下面加设铜垫板,以降低通路的电阻,从而减轻分流;若设计允许,在焊件的上层板两焊点之间冲一窄长缺口,便可使分流电流大幅下降。
图c所示为平行间接法,在焊件单侧馈电,当零件一侧电极的可达性很差或零件较大、二次回路又过长时可采用这一方式。此方法的缺点是存在分流,为减轻分流可在另一侧加设铜垫并作为单作用支点。
点焊参数对焊接效果的影响
影响动力电池组点焊质量的因素有很多,电阻点焊的两电极之间的电阻、点焊过程中的电流分流、焊接电流、焊接时间、电极压力和焊接电源方式的选择等均会对点焊的质量产生一定的影响。在这之中焊接电流、焊接时间、电极压力与焊接电源方式的选择是影响点焊质量的最大影响因素。
焊接电流,可以通过以下途径对点焊的加热过程产生影响:一是调节焊接电流有效值的大小,可使内部电源的热量发生显著变化;二是由于点焊时在两焊件接触点处会出现电流集中收缩,导致该处集中加热,首先出现塑性连接区,形成点焊时的不均发热过程,为改变这种不利因素,可选择不同的焊接电流波形、改变电极形状和端面尺寸等,都可改变电流场的形态,并控制电流的密度分布,以达到控制溶核形状及位置的目的。
随着焊接电流的增大,所产生的电阻热增多,与之相应的点焊溶核和接头的抗剪强度获得提高。但若焊接电流过大,反而会导致母材过热,甚至会使电极端面损耗加重。
通电时间,点焊时,电流通过两电极所产生的热量,一部分用于加热焊接区形成焊点,称为有效热量,对于一定的焊件材料和一定的焊接区金属体积的情况下,这部分的热量是一定的,它与加热时间的长短无关;另一部分则在加热的同时,被传到电极、焊接区周围冷金属和空气中,称之为损失热量,它是随着时间的延长而增加的。
如果瞬时地进行焊接,那么损失热量将等于零,总热量等于有效热量。所以要增加总热量时,不能采用任意延长焊接时间的方法。
电极压力,首先,电极压力对两电极间的总电阻影响显著,从而影响点焊过程中焊接热量的多少。其次,电极压力对焊接接头的散热性能有很大影响。当采用过小的电极压力时,两电极之间的电阻增大,产生了更多的焊接热量,而此时焊接接头的散热性较差,易引发前期飞溅;当电极压力过大时,两电极之间电阻较小,电流密度减小,导致焊接热量不足,而且接头散热量好转,这些都导致溶核尺寸变小,焊透率下降,严重时造成虚焊。在选择电极压力时,应选择不产生飞溅时的最小电极压力,即节能又能保证焊接质量。
焊接电源,电阻点焊设备通常由主电源,控制装置及机械装置三个主要部分构成。其中,焊接主电源作为其中最重要的一部分,选择符合需要的可控制的焊接电源是确保焊接质量的关键。
交流式焊接电源是利用变压原理将由交流380V电网的输入经变压后得到低电压的大电流。交流式焊接电源是所有的电阻焊电源中应用最广泛的一种。其通用性强、经济、易控制、维护简单,被广泛用于碳素钢、奥氏体不锈钢等电阻率较高材料的点焊。但是,其功率因素低,仅为0.4-0.5;对电网冲击较大,可能会影响其他用电设备的正常使用;其焊接时最短放电时间为1/2波,即0.01s,不能实现对爆接的精确控制,不适合特殊材料的高标准焊接。
逆变式焊接电源,工作原理是先将输入的三相交流电整流成直流电,经滤波后得到的波动较小的直流电,然后由IGBT将直流电逆变为中频交流电输入到变压器,再经降压整流获得的直流电供到电极对工件进行焊接。
逆变式焊接电源具有以下优势:逆变系统受供电系统影响很小,三相负载平衡,对焊接电流的控制和测量精度都得到了很大提髙;只是交流式焊接电源的1/3的质量和体积,轻便快捷;使用直流电进行焊接,没有过零现象,热效率得到大大提高,而且比较节能。因此,逆变式焊接电源在高速自动化的生产中得到了广泛应用。
另外还有两种常见电源,次级整流式焊接电源是在交流式焊接电源的基础上加入整流器进行改进得来的,温升快,且焊接质量更加稳定;焊接通用性很强,可用于焊接各类金属材料,且能获得比交流式电源更好的焊接效果。电容储能式电源是利用电容器的储能作用,开始电容器从电网中吸收能量,当焊接工件时,电容器在短时内完成放电,经变压器变压后向被焊工件放电。目前小功率的电容储能式焊机得到了大范围使用。
电阻焊常见接问题
焊点被烧穿
焊点压痕过大
焊点太小或强度不够
焊点有烧痕或划痕
焊接时飞溅大
焊点有裂纹
案例,圆柱模组母排连接
马聪在他的论文《电动汽车动力电池组的点工艺研究》中,介绍了一种圆柱形电池模组焊接相关研究成果。
某型号新能源电动汽车动力系统所使用的动力电池组,该电池组由若干个镀镍钢带壳体18650单体锂离子电池组成,经镀镍连接片串并联后向电动汽车供电。电池连接片的厚度0.2mm,锂离子电池外壳的厚度为0.25mm,两者都为薄板。动力电池外壳所用的镀镍深冲钢带镀镍层,要求镀镍层厚度为3-10μm。
评定材料的点焊可焊性的指标有:材料的导电性和导热性能,材料电导率小而且热导率越大的金属材料其点焊的焊接性越差;材料的高温强度和可塑性区间温度范围,高温屈服强度大、塑性温度区间窄的材料其焊接性能差;材料与电极粘损倾向,易与电极发生粘附的材料,点焊性较差;材料的热敏感性,易产生与热循环作用有关缺陷的材料其点焊性较差。
影响接质量的主要参数包括电极压力,接时间,接电流三个。有研究针对其影响力的大小进行对比,结果发现:
1)对接接头的影响大小依次为接电流>接时间>电极压力。即接电流I 对接接头的抗拉强度影响最大,其次是接时间t,再其次是电极压力p。(2)获得良好接接头的组合是A1B2C3,即接电极压力最小,接时间中等,接电流最大的形式。
来源:动力电池技术