发动机缸体第一道工序加工夹具结构优化

2017-03-25 23:30:27·  作者:范玉玺 文章来源:北京汽车工业控股有限责任公司动力总成分公司
 
生产中采用合理的夹具结构不仅可以解决发动机缸体毛坯初始定位的过定位问题,而且还降低了由于发动机缸体毛坯定位引起的废品率。另外通过增加机上测量系统解决了机下检测的困难和检测精度问题,并且实现了刀具自动补偿,提高了成品率和加工精度,节省了调换刀时间。

发动机缸体生产线OP10工序中,原来的设备存在以下问题:夹具存在过定位,使在后序加工中由于毛坯初始定位造成的废品率较高;工件加工后,由于毛坯的定位点无法准确重现,因此无法准确测量工件的加工尺寸;由于缸体左右面工艺定位凸台加工位置较多,因此刀具品种较多,使刀具调整和更换较频繁。

为了解决上述问题,就要制定新的加工工艺和设备方案,而且新的方案要降低毛坯定位产生的废品率,解决产品加工质量控制问题,降低生产节拍。

工艺方案

1.缸体毛坯初始定位的过定位问题和夹紧位置

缸体毛坯的加工位置、定位点和夹紧位置如图1所示:X方向(面对机床左右方向)定位由2#和3#缸孔确定;Z方向(面对机床前后方向)定位由1#和4#缸孔确定并限定了Y轴的旋转;Y方向(面对机床上下方向)定位由1#和5#主轴承孔确定并限定了Y轴和Z轴的旋转;X轴的旋转是由1#和4#缸孔、1#和5#主轴承孔共同限定的。请注意Y轴的旋转被限定了两次。图中4个向下的箭头表示夹紧位置。

缸体生产线OP10工序的加工工艺尺寸见图2,我们在充分了解和分析OP10工序的加工工艺尺寸的基础上确定了新设备和新夹具的设计方案。

2.新设备和新夹具的设计方案

新的设备主体采用三坐标数控机床,可以两轴联动。机床控制系统采用FANUC 18MB,夹具安装在旋转工作台上。设备具有工件自动输送和自动装夹系统,另外还具有加工尺寸测量和刀具补偿系统。机床先加工工件的一个面,然后安装在高精度旋转工作台上夹具旋转180°,再加工工件的另一个面。图1中的发动机缸体毛坯初始定位是由几个空间定位点组成,图2中的两个平面构成的空间尺寸76.2±0.05mm和平面度0.05的要求是下道工序的定位基准,靠调刀和测量达到76.2±0.05mm和平面度0.05的要求是很困难的。最好的办法就是用数控轴来加工,因此采用了三坐标数控机床。下道工序(铣顶面)的加工尺寸、定位点和夹紧位置见图3。

新设计的夹具图纸见图4,夹具的动作全部由液压系统驱动。它的上半部分对应1#、2#、3#和4#缸孔的6个定位点;它的下半部分对应1和5主轴承孔的4个定位点。这4个定位块是可以伸缩的,以便于在松夹后工件的输送。另外,这4个定位块是一个整体,在定位时可以绕15轴旋转,这样就消除了Y轴旋转的过定位问题。

测量系统

测量系统利用了数控机床的高精度,采用了RENISHAW测头。测量系统设备启动后测头首先测量夹具上的三个Z轴基准点,并和基准数据比较正确无误后才开始加工。加工完成后在不松夹的状态下对工件进行测量,如果工件合格则记录数据,加工下一个工件;如果不合格机床进行声光报警,由相关人员处理。

检测频次可根据加工情况任意设定,设定的依据为刀具的磨损情况和工件的加工要求。检测频次的高低对生产节拍是有影响的,检测频次越高生产节拍越长。

刀具自动补偿

由于有了测量系统实现刀具的自动补偿就很容易了。根据测量系统对工件的测量结果,刀具自动补偿系统会在Z轴上把刀具补偿到公差的中值位置。另外,还需要一个标准的工件,用于设备各个系统的恢复。

结语

此工艺方案经过技术交流,使制造厂家充分了解了工艺方案的技术意图,通过审图、预验收、最终验收到投入生产使用,及较长时间的生产实践证明,此工艺方案达到了预期的效果,经济效益非常显著。